• Modification And Testing Of Biomass Dryer

  • CHAPTER ONE -- [Total Page(s) 4]

    Page 1 of 4

    1 2 3 4    Next
    • CHAPTER ONE
      INTRODUCTION
      1.1    Background to the Study
      Drying is the dehydration process used to remove the moisture present in food products by the application of heat.  The heat may be supplied either by hot air or from the biomass energy.  Drying process is used to preserve the food products for future usage.  Drying prevents the growth of bacteria and yeast formation.  Drying can be achieved by using open air and biomass dryers. (Atul et al, 2014). Drying has a vital role in post harvest processing. It has always been of great importance for conserving agricultural products and for extending the food shelflife. (Doymaz 2007).
      Drying crops by biomass energy is of great economic importance, especially in Nigeria where most of crops and grain harvests are lost to fungal and microbial attack. These wastage could be easily prevented by proper drying which enhance storage of crops and grains over long period of time. The biomass energy can easily be harnessed by a proper design of biomass dryer for crop drying. This method of drying requires the transfer of both heat and water vapor (Forson et al, 2007). Biomass drying is a process of using biomass energy to heat air and the product so as to achieve drying of agricultural products (Ajay et al, 2009).  Biomass air heaters are simple devices to heat air by utilizing biomass energy and employed rate temperature between 800C such as crop drying and space heating (Bukola and Ayoola, 2008).  
      Biomass can be define as all renewable or organic matter including plant materials, animal products, and forestry by products and urban wastes etc  with highly different properties to be used as fuels. Energy obtained from biomass is not site specific, thus can be established at any place where plant and animal waste is available. The biomass backup burner helps the small scale farmers to dry their product in a more efficient manner.  It is also able to reduce the drying time as compared to direct sun drying (Paistet al, 2005).
      The biomass dryer is one of the dryers which has achieved some level of acceptance.  One of the important disadvantages of the dryer is that it cannot be used without any backup heater during night times and cloudy days. Introducing biomass makes the dryer operational even beyond sunshine hours (IEA, 2011).
      1.2    Problem  Statement
      Majority of the rural farmers do not have access to sustainable electricity supply. Therefore, the biomass dryer are used to operate during raining season at harvest time, the biomass dryer must also be able to continue drying during this period in order to achieve effective drying.  It must be able to continue drying until late evening to shorten the drying period (Akhrani et al, 2013).  With the price of energy constantly rising, the use of biomass presents air option for decreasing energy dependency. There is also an account locally produced biomass contributes to self-sufficiency and a low dependency on the energy market and on other region (Hutla and Mazancova, 2004).
      Thus, there is the need to design and fabricate a biomass dryer that would solve the above mentioned problems for the farmers.
      1.3    Aim and Objectives
      This aim of this project is tomodified a biomass dryer in order to reduce the moisture content of agricultural crop so as to prolong their shelflife using biomass as a source of heat generation.
      The specific objectives of this project are:-
      i.    To extend the condenser in the drying chamber for easy conveyance of the heated air
      ii.    To redesign briquette  chamber to avoid heat loss and for easy loading of briquette
      iii.    To introduce copper pipe for easy transfer of heat into the drying trays
      iv.    To carryout performance evaluation on the biomass dryer in term of weight loss, temperature and time
  • CHAPTER ONE -- [Total Page(s) 4]

    Page 1 of 4

    1 2 3 4    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACTDrying is out of the major problem in post harvest operation. The traditional method of  Drying (Sun drying) is weather dependent and unhygienic which affect food storage most especially in developing countries like India where more than 3300 to 3700 hours of bright sunshine per year available in North- West and West coastal region. The dryer consist of the following operating component parts: a cabinet, blower, trays, temperature controller, copper wire and light emitting Diode (LED) s ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 1 ]Drying rate of turmeric at 500c 2kg= 2000g  of turmeric before peeling 1.572kg= 1572g of turmeric after peeling thickness= 3mm 2kg= 2000g of turmeric1.680kg= 168.0g of turmeric after peeling Thickness= 3mm     : 1572g÷6=310g 2kg= 2000g of turmeric 1.689kg= 1680g of turmeric after peeling Thickness= 6mm : 1680 ÷ 6= 280g2kg= 200g of turmeric 1.860kg= 1860g of turmeric after peeling Thickness= 9mm : 1860 ÷6= 310g ... Continue reading---

         

      APPENDIX C - [ Total Page(s): 1 ]Drying rate of turmeric at 700c 2kg= 2000g of turmeric before peeling 1.710kg= 1710g of turmeric after peeling Thickness= 3mm : 1.710 ÷ 6 = 285g 2kg= 2000g of turmeric before peeling 1.620kg= 1620g of turmeric after peeling Thickness= 6mm     : 1620g÷6=270g 2kg= 2000g of turmeric 1.740kg= 1740g of turmeric before peeling Thickness= 9mm: 1740 ÷ 6= 290g ... Continue reading---

         

      APPENDIX B - [ Total Page(s): 1 ]Drying rate of turmeric at 600c 2kg= 2000g of turmeric before peeling 1.620kg= 1620g of turmeric after peeling Thickness= 3mm : 1620 ÷ 6 = 260g 2kg= 2000g of turmeric before peeling 1.560kg= 1560g of turmeric after peeling Thickness= 6mm     : 1560g÷6=260g 2kg= 200g of turmeric 1.800kg= 1800g of turmeric before peeling Thickness= 9mm: 1800 ÷ 6= 300g ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable No   Table 3.1:      Bought out Components for the Production Table 3.2:      Cost of Materials for the Production Table 4.1     Drying Rate of Turmeric at 500C When Loaded with 2000g Table 4.2     Drying Rate of Turmeric at 600C When Loaded with 2000g  Table 4.3     Drying rate of Turmeric at 700C When Loaded with 2000g  Table 4.4     Analysis of Variance (ANOVA) Table for Sample 3mm, 6mm, and 9mm at Temperature 500C.  Table 4.5     Analysis of V ... Continue reading---

         

      LIST OF PLATES - [ Total Page(s): 1 ]LIST OF PLATESPlate No  Plate 3.1:     Charcoal  Plate 3.2:     Digital Weighing Scale Plate 3.3:     Temperature Controller  Plate 3.4:     Biomass Dryer  Plate 3.5:     Digital Venier Caliper Plate 4.1:     Sliced Tormeric Before Drying  ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure No Figure 2.1:     The Period of drying  Figure 4.1:     Effect of Drying Rate of Turmeric at 500C of 3mm, 6mm and 9mm size of Turmeric Figure 4.2:     Effect of Drying Rate of Turmeric at 600C of 3mm, 6mm and 9mm size of Turmeric Figure 4.3:     Effect of Drying Rate of Turmeric at 700C of 3mm, 6mm and 9mm size of Turmeric ... Continue reading---

         

      APPENDIX D - [ Total Page(s): 1 ] ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSCover Page  Title Page  Certification Dedication  Acknowledgments Abstract Table of Contents List of Tables List of Figures  List of Plates  CHAPTER ONE: INTRODUCTION    1.1    Background to the Study 1.2    Problem  Statement  1.3    Aim and Objectives  1.4    Justification 1.5    Scope of the Project  CHAPTER TWO: LITERATURE REVIEW    2.1    Drying as an Element of Post Harvest  2.1.1    Types of Losses 2.1.1.1    Moisture Content 2.1.1. ... Continue reading---

         

      CHAPTER TWO - [ Total Page(s): 7 ]Dhanushkodi et al (2015) developed a biomass dryer fir small scale cashew kernel drying.  The components are heater, blower and drying chamber.  Performance characteristics of the biomass dryer including system efficiency has been evaluated experimentally based on drying of 40kg of cashew kernel.  The dryer is capable of producing hot air continuously with temperature ranging between 700 C to 750C.  The performance analysis showed that the moisture reduction from 9% to 4% was achieved within ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 7 ]Transport and logistic       =          N 20,000Total cost = A + B + C         N177,000 + N26,250 + N20,000        =    N223,250.003.10.1    Sourcing of Raw Material    The turmeric (Curcuma Longal) was bought at Ipata market in Ilorin, Kwara State. This material was confirmed fresh and tender and matured so as to get best quality and nutritious product at the end of the experiment. The initial moisture content of the turmeric was 43% moisture content.3.10.2   ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 5 ]The initial moisture content of Turmeric after harvest was 43% fresh weight basis. As drying temperature increases, moisture percentage decrease and as drying time increases, moisture content decreases as will.Hence, analysis of variance (ANOVA) shows that the cutting and drying temperature is significant at 5%. This work is related to the research conducted by Phagu, (2015) who reported that the best drying rate of turmeric is 60oC at 3mm. ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE CONCLUSIONS AND RECOMMENDATIONS 5.1    Conclusions     A biomass dryer was modified and tested in the department of Agricultural and Bio-environmental engineering, Kwara State Polytechnic, Ilorin. Based on the results obtained from the experiment, the following conclusions were drawn. 1.    The temperature considered was 500C, 600C and 700Cat 3mm, 6mm and 9mm respectively. 2.    The average weight loss at 500C of 1572g of turmeric was found to be 272.8g, at 600C of 2000g ... Continue reading---

         

      REFRENCES - [ Total Page(s): 2 ]REFERENCEAggarwal, B.B., Sundaram, C., Malani, N. and Ichikawa, H. (2007). Curcumin: The India Solid Gold. Advances in Experimental Medicine and Biology, 595: 1-75.Ajayi C., Orsunil K. S. and Depak D. P. (2009):  Design of solar dryer with Turbo ventilator and fireplace.  www.solarfood.org/solarfood/--/solarfood.Atul Petal AND Gaurav Petal (2004):  “Operation22..al Augmentation of forced circulation type solar Dryer System using CFD Analysis”.  Int. 10 Journal of Engineering Rese ... Continue reading---