• Effect Of Introducing Garden Egg To Fluted Pumpkin In A Relay Intercrop On Sole And Combined Growth Of The Crop Mixtures

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 2 of 5

    Previous   1 2 3 4 5    Next
    • Types of intercropping (spatial and temporal patterns)
      Several types of intercropping, all of which vary the temporal and spatial mixture to some degree, have been described (Andrews and Kassam, 1976). The degree of spatial and temporal overlap in the component crops can vary somewhat, but both requirements must be met for a cropping system to be an intercrop. Thus, there are several different modes of component crops (Willey, 1985). Yield advantage occurs because growth resources such as light, water, and nutrients are more completely absorbed and converted to crop biomass by the intercrop over time and space as a result of differences in competitive ability for growth resources between the component crops, which exploit the variation of the mixed crops in characteristics such as rates of canopy development, final canopy size (width and height), photosynthetic adaptation of canopies to irradiance conditions, and rooting depth (Midmore, 1993; Morris and Garrity, 1993; Tsubo et al., 2001). Regularly intercropped pigeon pea or cowpea can help to maintain maize yield to some extent when maize is grown without mineral fertilizer on sandy soils in sub-humid zones of Zimbabwe (Waddington et al., 2007). Intercropping maize with cowpea has been reported to increase light interception in the intercrops, reduce water evaporation, and improve conservation of the soil moisture compared with maize alone (Ghanbari et al., 2010). This yield advantage occurs when the component crops do not compete for the same ecological niches and the interspecific competition for a given resource is weaker than the intraspecific competition. Normally, complementary use of resources occurs when the component species of an intercrop use qualitatively different resources or they use the same resources at different places or at different times (Tofinga et al., 1993). In ecological terms, resource complementarity minimizes the niche overlap and the competition between crop species, and permits crops to capture a greater range and quantity of resources than the sole crops. Improved resource use gives in most cases a significant yield advantage, increases the uptake of other nutrients such as P, K, and micronutrients, and provides better rooting ability and better ground cover as well as higher water use efficiency (Midmore, 1993; Morris and Garrity, 1993). Thus, selection of crops that differ in competitive ability in time or space is essential for an efficient intercropping system as well as decisions on when to plant, at what density, and in what arrangement. Although in this way cropping management decisions specify the design of intercropping systems, intercrop performance is governed largely by the availability of and the competition for the environmental resources. Research has shown that intercrops are most productive when component crops differ greatly in growth duration (Wien and Smithson, 1981; Smith and Francis, 1986; Fukai and Trenbath, 1993; Keating and Carberry, 1993). For example, when a long duration pigeon pea cultivar was grown in mixture with three cereal crops of different growth durations, i.e. setaria, pearl millet, and sorghum, the Land Equivalent Ratio was highest with the quick-maturing setaria and lowest with the slow-maturing sorghum (Rao and Willey, 1980). It must be noted here that Land Equivalent Ratio shows the efficiency of intercropping for using the environmental resources compared with monocropping with the value of unity to be the critical value. When the Land Equivalent Ratio is greater than one (unity) the intercropping favours the growth and yield of the species, whereas when the Land Equivalent Ratio is lower than one the intercropping negatively affects the growth and yield of the plants grown in mixtures (Willey, 1979; Willey and Rao, 1980). Asynchrony in resource demand ensures that the late maturing crop can recover from possible damage caused by a quick-maturing crop component and the available resources, e.g. radiation capture over time, are used thoroughly until the end of the growing season (Keating and Carberry, 1993). By contrast, when the component crops have similar growth durations their peak requirements for growth resources normally occur about the same time and the competition for the limiting growth resources is intense (Fukai and Trenbath, 1993).

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 2 of 5

    Previous   1 2 3 4 5    Next
    • ABSRACT - [ Total Page(s): 1 ]The effect of introducing garden egg (Solanum aethiopicum) to fluted pumpkin (Telfairia occidentalis) in a relay intercrop on the growth of crop mixture under rainfed conditions (September to November, 2014) was investigated at the Faculty of Agriculture University of Benin, Benin City Nigeria.Garden egg and a local variety of fluted pumpkin were sown sole and intercrop. Garden egg and fluted pumpkin were planted sole and intercropped to evaluate their interaction effect on growth parameters suc ... Continue reading---