• Investigation On The Characteristics Of Cornstalk Ash Blended Cement

  • CHAPTER TWO -- [Total Page(s) 9]

    Page 9 of 9

    Previous   5 6 7 8 9
    • Utilization of high-silica corn husk ash (HSCA) as a SCM has the potential to benefit the environment, as well as corn and cement producers. Corn biomass normally left to degrade in the field can now become a commodity. Cellulose-based ethanol production facilities produce the bio-fuel from corn biomass without removing the silica necessary for use as a SCM. The current socio-economic climate in the world requires engineers to consider nontraditional materials to help minimize environmental impacts. Low-cost cementitious materials are necessary for improving the standard of living in sub-Saharan Africa and the utilization corn husk ash for extending the cement supply could be one solution
      Empirical Study
      In an attempt to reuse and convert agro wastes into useful materials for the construction industry,  Raheem, Adedokun, Adeyinka and Adewole conducted a research and considered the application of corn stalk ash (CSA) as partial replacement for ordinary Portland cement (OPC) in the production of interlocking paving stones. The study investigated the oxide composition of CSA to ascertain its suitability as a pozzolanic material. Some properties of paving stones with CSA as a replacement for OPC were examined. The results showed that CSA is a good pozzolana having satisfied the required standards. The compressive strength of the specimens with replacement levels ranging from 5 to 25% cured for periods of 3–56 days was lower at early curing time but improved significantly at later age. 10% replacement level showed increased strength compared to 0% CSA at 28 days curing period. Density decreased with increasing ash content, water absorption rate increased with increased CSA contents, while abrasion resistance increased with increasing amount of CSA substitutions. The test results revealed that CSA paving stones can attain higher strength than the conventional ones at longer curing periods, due to its pozzolanic reactions.
      In an attempt to convert waste product into useful material for the construction industry, Adesanya and Raheem (2009) similarly conducted a research on the use of corn cob ash (CCA) as a pozzolan in cement production. The study investigated the chemical composition of CCA. Factory production of the CCA – blended cement was carried out by replacing 0%, 2%, 4%, 6%, 8%, 10%, 15%, 20% and 25% by weight of Ordinary Portland Cement clinker with CCA. The 0% replacement serves as the control. The results showed that CCA is a suitable material for use as a pozzolan as it satisfied the minimum requirement of combined SiO2 and Al2O3 of more than 70%, which a good pozzolan for manufacture of blended cement should meet. The blended cements produced also satisfied both NIS 439:2000 and ASTM C 150 requirements especially at lower levels (<15%) of CCA percentage replacement. Based on the test results, it was concluded that CCA could be suitably used in blended cement production.
      In order to explore the effects of corn stalk fiber content on properties of biomass brick, compression strength and deformation rate are studied by Zeguanglu, Ziyuezhao, Mengwant, and Wndajia (2016). Based on their findings, compression strength ranges similar to a concave parabola with the increasing corn stalk fiber content. Deformation rates in thickness are greater than ones in length and width. Drying shrinkage and permanent deformation rates of brick are greater than elastic recovery one in length and width. Elastic recovery deformation rate is greater than drying shrinkage and permanent ones in thickness. The results provide a basic theory for manufacturing biomass brick.
      Grandinaru, Barbuta, Babor, and Serbanoiu (2018) carried out a study on corn ash blended cement and its specific weight on different occasion was reported as 1.15 g/cm3, 2.18 g/cm3 , or 3.11 g/cm3. Its dry density is 2180 kg/m3, and its bulk density is 923 kg/m3. The study was further made on concrete with corn stalk ash as partial replacement of cement and it was reveal that 8% Corn stalk ash improves the compressive strength of the concrete with 10% by using an accelerator additive, with 14.3% by using a water reducer and retarder, and with 29.1% by using a plasticizer.

  • CHAPTER TWO -- [Total Page(s) 9]

    Page 9 of 9

    Previous   5 6 7 8 9
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACT IS COMING SOON ... Continue reading---

         

      APPENDIX A - [ Total Page(s): 3 ]Appendix D: Concrete cubes after 28days curing. ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable 4.1    Chemical Composition of Cornstalk AshTable 4.2    Results for Surface Area, Residue and Expansion Table 4.3    Compressive Strength for Ordinary CementTable 4.4    Compressive Strength of Cornstalk Blended Ash-10Table 4.5         Compressive Strength of Cornstalk Blended Ash-20Table 4.6    Flexural Strength of Ordinary Cement, 10 and 20 Blended CementTable 4.7    Compressive Strength of Ordinary Cement, 10 and 20 Blended Cement ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFigure 2.1:    Properties of CementFigure 3.1:    Corn plantFigure 3.2:    Specimen of CornstalkFigure 3.3:    Cornstalk AshFigure 4.1:    Flexural Strength Graph of Ordinary CementFigure 4.2:    Compressive Strength Graph of Cornstalk Blended Ash ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTTitle pageCertificationDedicationAcknowledgement AbstractTable of ContentsList of TablesList of FiguresCHAPTER ONE: INTRODUCTIONi.    Background to the studyii.    Problem statementiii.    Aim of the studyiv.    Objectives of the studyv.    Justificationvi.    ScopeCHAPTER TWO: LITERATURE REVIEW2.0.Introduction2.1.Corn and Corn Cultivation2.2.Corn and Corn Stalk2.3.Chemical Composition of Corn Stalk2.4.Corn Stalk Ash blended Cement and Construction Industry2.5.B ... Continue reading---

         

      CHAPTER ONE - [ Total Page(s): 2 ]ix.    Aim of the studyThe aim of this study is to investigate the characteristics of corn stalk blended cement as a partial replacement for ordinary portland cement.x.    Objectives of the studyThe main aim of this study is to investigate the characteristics of corn stalk blended cement as a partial replacement for ordinary portland cement while the objectives of the study are:•    To ascertain the characterization of corn stalk ash.•    To determine of the effects of co ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 3 ]In order to get the corn stalk, the leaves and sheaths were removed to expose the stalk. The stalks with a straight stem, free from pest and disease, without insect bites, without apparent defects on the surface of the stems, and with uniform color were selected. The mean length of the corn stalks was 2100mm, the pitch of corn stalk was taken artificially and made into a column shape for use as test specimen with a cross-section of 10mm by 10mm and a length of 100-150mm. Figure 3.2 shows the cor ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 5 ]CHAPTER FOURRESULTS AND DISCUSSIONCorn stalk ash (CSA) is not a good pozzolanic material, since it has the combined percentage composition of silica (SiO2), alumina (Al2O3) and iron oxide (Fe2O3) of 18.78%, which is less than 70%. It therefore does not satisfy the requirement for use as a pozzolana according to ASTM C618(2005). ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE CONCLUSIONS AND RECOMMENDATION5.0  CONCLUSIONSThis study has dealt tremendously on the investigation of the characteristics of cornstalk ash blended cement. The findings of this research has led to the following conclusions:•    The study revealed that Corn stalk ash (CSA) is not a good pozzolanic material because it does not satisfy the standard specified by ASTM C618(2005).•    The compressive strength of the concrete cubes increased with curing period and amou ... Continue reading---

         

      REFRENCES - [ Total Page(s): 3 ]Technical Paper for Industrial Technologies Programme.Rashad, A.: Cementitious materials and agricultural wastes as natural fine aggregate replacement inconventional mortar and concrete. In: Journal of Building Engineering 5 (2016), p. 119–141. SR EN 12350-6:2010: Testing fresh concrete, Part 6: Density. SR EN 12390-3:2009/AC:2011: Testing hardened concrete, Part 3: Compressive strength of test specimens.SR EN 12390-5:2009: Testing hardened concrete, Part 5: Flexural strength of test spec ... Continue reading---