-
The Effect Of Antidiabetic Agent Glibenclamide And Meltformine On Lipids And Glycated Haemoglobin In Type 2 Diabetes Patient Attending Uith Ilorin
CHAPTER TWO -- [Total Page(s) 11]
Page 9 of 11
-
-
-
Subfractions
Five subfractions of HDL have been identified. From largest (and most effective in cholesterol removal) to smallest (and least effective), the types are 2a, 2b, 3a, 3b, and 3c
Major lipids in the human body
Lipids are a heterogeneous group of compounds which are relatively insoluble in water and soluble in non-polar solvents. Triglycerides (TG ), cholesterol, and phospholipids are the major lipids in the body. They are transported as complexes of lipid and proteins known as lipoproteins.
TGs (triglycerides): TGs are formed by combining glycerol with three molecules of fatty acid. TGs, as major components of VLDL and chylomicrons, play an important role in metabolism. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the TGs by lipase to release free fatty acids (FFA). TGs are water-insoluble, non-polar neutral fats. These are not the structural components of biological membranes.TGs synthesis and storage mostly occurs in liver and adipose tissue. FFA and glycerol must be activated prior to the synthesis of TGs into Acyl-CoA and glycerol-3-phosphate respectively (Jarvinen et al., 2005).
Cholesterol: The name cholesterol originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix-ol for an alcohol. It is an essential structural component of cell membrane, where it is required to establish proper membrane permeability and fluidity. In addition, cholesterol is an important component for the manufacture of bile acids, steroid hormones, and vitamin D. Although cholesterol is an important and necessary molecule, a high level of serum cholesterol is an indicator for diseases such as heart disease. About 20-25% of total daily cholesterol production occurs in the liver.
Phospholipids: Phospholipids are TGs that are covalently bonded to a phosphate group by an ester linkage. Phospholipids perform important functions including regulating membrane permeability and in maintaining electron transport chain in mitochondria. They participate in the reverse cholesterol transport and thus help in the removal of cholesterol from the body. They are involved in signal transmission across membranes and they act as detergents and help in solubilization of cholesterol.
Lipoprotein: These consist of a central core of a hydrophobic lipid (including TGs and cholesteryl esters) encased in a hydrophilic coat of polar phospholipid, free cholesterol and apolipoprotein. There are six main classes of lipoprotein, differing in the relative proportion of the core lipids and in the type of apoprotein.
• Chylomicrons
• VLDL-C particiles
• IDL-C particles
• LDL-C particles
• HDL-C particle
• Lipoprotein (Stuart et al., 2007)
2.5.3 Epimodility
Men tend to have noticeably lower HDL levels, with smaller size and lower cholesterol content, than women. Men also have an increased incidence of atherosclerotic heart disease. Alcohol consumption tends to raise HDL levels, and moderate alcohol consumption is associated with lower cardiovascular and all-cause mortality. Recent studies confirm the fact that HDL has a buffering role in balancing the effects of the hypercoagulable state in type 2 diabetics and decreases the high risk of cardiovascular complications in these patients. Also, the results obtained in this study revealed that there was a significant negative correlation between HDL and activated partial thromboplastin time (APTT) (Onat et al., 2006).
Epidemiological studies have shown that high concentrations of HDL (over 60 mg/dL) have protective value against cardiovascular diseases such as ischemic stroke and myocardial infarction. Low concentrations of HDL (below 40 mg/dL for men, below 50 mg/dL for women) increase the risk for atherosclerotic diseases.
Data from the landmark Framingham Heart Study showed that, for a given level of LDL, the risk of heart disease increases 10-fold as the HDL varies from high to low. On the converse, however, for a fixed level of HDL, the risk increases 3-fold as LDL varies from low to high.
Even people with very low LDL levels are exposed to increased risk if their HDL levels are not high enough (Dailey et al., 2004).
2.5.4 Estimating HDL via associated cholesterol
Clinical laboratories formerly measured HDL cholesterol by separating other lipoprotein fractions using either ultracentrifugation or chemical precipitation with divalent ions such as Mg2+, then coupling the products of a cholesterol oxidase reaction to an indicator reaction. The reference method still uses a combination of these techniques. Most laboratories now use automated homogeneous analytical methods in which lipoproteins containing apo B are blocked using antibodies to apo B, then a colorimetric enzyme reaction measures cholesterol in the non-blocked HDL particles. HPLC can also be used. Sub fractions (HDL-2C, HDL-3C) can be measured, but clinical significance of these sub fractions has not been determined (Bergman et al., 1990).
2.6 HDL particles have long been divided into 5 subgroups, by density/size (an inverse relationship), which also correlates with function and incidence of cardiovascular events. Unlike the larger lipoprotein particles which deliver fat molecules to cells, HDL particles remove fat molecules from cells which need to export fat molecules. The lipids carried include cholesterol, phospholipids, and triglycerides, amounts of each are quite variable.
Increasing concentrations of HDL particles are strongly associated with decreasing accumulation of atherosclerosis within the walls of arteries. This is important because atherosclerosis eventually results in sudden plaque ruptures, cardiovascular disease, stroke and other vascular diseases. HDL particles are sometimes referred to as "good cholesterol" because they can transport fat molecules out of artery walls, reduce macrophage accumulation, and thus help prevent or even regress atherosclerosis. However, studies have shown that HDL-lacking mice still have the ability to transport cholesterol to bile, suggesting that there are alternative mechanisms for cholesterol removal (Drouin et al., 2004).
CHAPTER TWO -- [Total Page(s) 11]
Page 9 of 11
-
-
ABSRACT - [ Total Page(s): 1 ]Abstract Is Coming Soon ... Continue reading---
APPENDIX A - [ Total Page(s): 1 ]APPENDIX IQUESTIONAIRE TO ACCESS THE ANTHROPOLOGIC INDICES OF PATIENTS WITH TYPE TWO DIABETES MELLITUS ON ANTIDIABETIC DRUGS (METFORMIN AND GLIBENCLAMIDE) ATTENDING UITH ILORIN.INTRODUCTION: I am a final year students of the Department of Medical Laboratory Science, School of Basic Medical Sciences, Kwara State University, Malete, Kwara State. This questionnaire is aimed at accessing the demographic indices of patients with type 2 Diabetes mellitus on metformin and diabinese in Ilorin metropolis ... Continue reading---
APPENDIX B - [ Total Page(s): 5 ]Step 2100µl of the supernatant was dispensed into the clean test tubes respectively.2ml of the cholesterol reagent was addedIt was incubated at room temperature for 10minsAbsorbance of sample against reagent blank was measured at 505nmGlycated HaemoglobinGlycated Haemoglobin is a form of haemoglobin that is measured primarily to identify the three-month average plasma glucose concentration. The test is limited to a three-month average.ProcedureReagentsBlank(µl) samp ... Continue reading---
CHAPTER ONE - [ Total Page(s): 2 ]The present study was designed to investigate and compare the effects of glibenclamide and metformin on prevalence of metabolic syndrome in type 2 diabetic patients.1.2 STATEMENT OF PROBLEMTo know if antidiabetic agents glibenclamide and meltformine has any effect on lipid and glycated haemoglobin in type 2 diabetes patients1.3 AIM OF STUDYTo evaluate the effect of antidiabetic agent glibenclamide and meltformine on lipids and glycated haemoglobin in type 2 diabetes patient attendi ... Continue reading---
CHAPTER THREE - [ Total Page(s): 1 ]CHAPTER THREE3.1 Material and Method3.2 Study AreaThe study was carried out at University of Ilorin Teaching Hospital, Ilorin, Kwara State. The hospital is located at the State capital of Ilorin, Kwara State Nigeria. It is a referral center to other public and private hospitals within and outside the state.3.3 SAMPLE SIZE DETERMINATIONThere was a random selection of ninety (90) subjects, 60 were type 2 Diabetes mellitus individual using either one or combine antidiabetic agent (glibe ... Continue reading---
CHAPTER FOUR - [ Total Page(s): 4 ]Tables 4.6: Correlation of Duration in Diabetes and BMI with biochemical parameters (T. cholesterol, High Density Lipoprotein, Low Density Lipoprotein, triglycerides, glycated, and fasting blood sugar) in Diabetic patient using antidiabetic drugs (Metformin and Glianpride). ... Continue reading---
CHAPTER FIVE - [ Total Page(s): 2 ]CHAPTER FIVE5.0 DISCUSSIONThe study shows discrepant results about the influence of metformin on lipid profile (10). Some studies, in agreement with ours, reported reduction only in TC levels (Grant, 1996; Ginsberg et al., 1999), while others reported reduction of TC and TG with an increase of HDL-C (Robinson et al., 1998; Yki-Jarvinen et al., 1999). Still other studies showed no changes in lipid profile (Groop et al., 1998; Rains et al., 1998). Another investigation showed an association of met ... Continue reading---
REFRENCES - [ Total Page(s): 3 ]Rodger, W. (2012). Sulphonylureas and heart disease in diabetes management. Diabetes Spectrum. Pg. 12–27.Rosenbaum, M. and Leibel, R. L. (2014). Role of leptin in energy homeostasis in humans. Journal of Endocrinology. 223(1): 83-96.Rowley, D.E. and Bezold, D.C. (2012). Using new insulin strategies in the outpatient treatment of diabetes: clinical applications. Journal of American Medical Association. Pg. 289.Shaw, D., De Rosa, N. and Di Maro, G. (2010). Metformin improves glucose, lipid ... Continue reading---