• Analysis Of Properties Of Kaolin Deposits In Nigeria
    [CASE OF STUDIES OF KPANKOROGI AND IJERO-EKITI]

  • CHAPTER ONE -- [Total Page(s) 2]

    Page 1 of 2

    1 2    Next
    • CHAPTER ONE
      1.0                                                   Introduction
             Kaolin is a clay rock and part of the group of industrial minerals with the chemical composition (Al2Si205 (OH)4.
      It is a layered silicate mineral with one tetrahedral sheet linked through oxygen atoms to one octahedral sheet alumina i.e. structurally composed of silicate sheet (Si2O¬5) bonded to aluminum oxide/hydroxide layer Al2 (OH)4 called gibbsite layers and repeating layer of the mineral are hydrogen bonded together. (Rost, 1992; Bish, 1993; Klein and Kuribut, 1993; Slivka, 2002).
              Kaolin is a plastic raw material, particular consisting of clay mineral kaolinite. In systematic mineralogy, Kaolin ranks among phyllosilicates, which are stratified clay minerals formed by a network of tetrahedral and octahedral layers. Phyllosillicates are classified into the main groups according to the type of layers, inter-layer contents, charge of the layers and chemical formulas. Besides kaolinite groups, serpentine, halloysite, pyrofylite, mica and montmorillonite groups also ranks among phylllosillicates. Group of kaolinites includes di-octahedral mineral with two layers and one silica (SiO4) tetrahedral layer and one aluminum (Al2(OH)4) octahedral layer. The layers are bondecd together by sharing oxygen anion between Al and Si together, these two layers are called platelets (Pauk,et al.,1962; Stejskal, 1971., Duda et al., and Hurlbut, 1993).
      Kaolinite shares the same chemistry as the mineral halloysite, dickeite and necrite.  The four minerals are polymorphs as they have the same chemistry but different structures. All the minerals were derived from chemical alteration of aluminum rich silicate minerals, such as feldspars. However, they could be found as sedimentary deposits as well as hydrothermal alteration product of rocks containing a high of alumino-silicate minerals.
            Kaolin is formed under acidic conditions through weathering or hydrothermal change of feldspars, and to a lower extent also other weathered kaolin deposits, kaolin clay or may be a compound of kaolinite, sandstones and olitic ironstones, and  less frequently also of pegmatite and hydrothermal deposit. The most significant kaolin deposits were formed through intensive weathering of rock rich in feldspars (granite, arkoses, certain types of ortho-gneisses and misgmatites).        
       Millions years ago, original material was decomposed by weathering, giving rise to kaolin and silica combined with higher or lower amounts of admixtures.(Bernard, el al; 1992).  
      1.1   Aim and Objectives of the Study
       Aim of this study is to determine the suitable industrial application of kaolin from location investigated.
      To achieve the above stated aim, the following objective will be carried out:
      i.    determination of mineralogical composition of the kaolin deposits
          ii      determination of the chemical/oxide composition of the deposits
          iii     determination of the physical and engineering properties of the kaolin deposits.
      1.2   Scope and Limitation of the Study
      The purpose of this project covers two deposits, the Kpankorogi and the Ijero-Ekiti kaolin deposits. Samples were collected from each of the deposits for oxide analyses, mineralogical analyses as well as the determination of the engineering and physical properties. The numbers of samples are limited due to cost constraint. A sample is collected from each of the deposits for both the oxides and mineralogical analyses. This particular study does not include reserve estimation, but this is recommended for future workers.
  • CHAPTER ONE -- [Total Page(s) 2]

    Page 1 of 2

    1 2    Next
    • ABSRACT - [ Total Page(s): 1 ]ABSTRACTThis study considered the mineralogical, elemental composition in form oxides and engineering properties such as particle size, specific gravity, bulk density; water content and atterberg limits of two kaolin deposits in Kpankorogi in Edu Local Government of Kwara State and in Ijero-Ekiti in Ijero-Ekiti Local Government Area, Ekiti State.This is  with a view to assessing their potentials for Various industrial applications. The analyses includes X-Ray Diffraction (XRD and X-Ray Fluoresc ... Continue reading---

         

      LIST OF TABLES - [ Total Page(s): 1 ]LIST OF TABLESTable 4.1:    Engineering and physical properties of the samples  Table 4.2:    Grain Size Analysis of the samples    Table 4.3:    Chemical composition of the Samples   Table 4.4:    Mineralogical components of the Samples Table 4.5      Major elemental oxides tested by kaolin sample compared with  chemical and industrial specifications  ... Continue reading---

         

      LIST OF FIGURES - [ Total Page(s): 1 ]LIST OF FIGURESFig. 3.1:      Map of Nigeria Showing Kwara and Ekiti States   Fig. 3.2:      Map of Ekiti State indicating the study Area A            Fig. 3.3:      Map of Kwara State indicating the Study Area B            Fig. 4.1:    X-ray Diffractogram of Kpankorogi Kaolin Sample  Fig.4.2:    X-ray Diffractogram of Ijero-Ekiti Kaolin Sample  ... Continue reading---

         

      TABLE OF CONTENTS - [ Total Page(s): 1 ]TABLE OF CONTENTSTitle Page   Certification        Dedication   Acknowledgement      Abstract        Table of Content      List of Tables     List of Figures                                                 CHAPTER ONE                                                                                1.0    Introduction  1.1   Aim and Objectives ... Continue reading---

         

      CHAPTER TWO - [ Total Page(s): 2 ]Kaolin also finds application as crystal to promote organic reactions, such as petroleum cracking or de-polymerization of large organic molecules found in natural hydrocarbons as demonstrated by (Iglewe and Nwokolo, 2005).The grain size and shape of kaolin is used to advantages in the paper industry, where it is used both as a filling agent and as coating agent also printing inks tend to adhere better to kaolin –treated paper surface (Velde, 1992, Aliyu, 1996).      Both grain and sha ... Continue reading---

         

      CHAPTER THREE - [ Total Page(s): 6 ]CHAPTER THREE3.0                                 Materials and Methods3.1     Description of the Studies AreasKaolin samples were collected from two different locations namely: kpankorogi and ijero Ekiti.Kpankorogi in Edu local government area of Kwara State is located in northern part of Kwara state on latitude 08052’38-6’’N and longitude 04059’55.5’’E at 72KM distance from Ilorin, the state capital. The Kpankorogi ar ... Continue reading---

         

      CHAPTER FOUR - [ Total Page(s): 5 ]The result of the oxide analysis is presented in the table 4.3. Elemental oxides found in the Samples are SiO2, Al2O3, Fe2O3, TiO2, MnO, CaO, MgO, K2O, Na2O, CuO, ZnO, Cr2O5, V2O5 and Se2O3, Table 4.5 shows the requirement and industrial specification. SiO2 of both Samples can be used in refractory bricks, ceramics, Al¬2O3 meets the requirement for refractory bricks, ceramics, and coating, TiO2 meets the range and can be used in  refractory bricks, rubber, ceramics, and bricks clay, CaO meet ... Continue reading---

         

      CHAPTER FIVE - [ Total Page(s): 1 ]CHAPTER FIVE5.0                             Conclusion and Recommendations5.1    ConclusionCompositional features and industrial applications of Kpankorogi and ijero Ekiti kaolin clay were analyzed based on mineralogy, Chemical composition and physical characteristics of the deposits. This is with the view to determining its suitability as industrial raw material. From the study, it is Obtained that kpankorogi kaolin clay deposit is predominantly Quartz but with hi ... Continue reading---

         

      REFRENCES - [ Total Page(s): 1 ]ReferencesAderiye, J.(2005). Development of firebricks for furnances. M.Sc. Thesis, Acta 60 (4), 553–564. ADONDUA, S (1988). Indigenous Refractory Raw Materials Base for Nigerian                            Steel Industry Journal of the Nigerian Society of Chemical Engineers (NSCHE), (7): 2, pp. 322-327. Aliyu, A. (1996): Potentials of the Solid Minerals Industry in Nigeria Abuja: RMDC. Pp. 1-40, 63 – 83, 164 – 172 Aref, A. (2009): Characterizatio ... Continue reading---