• Extraction And Characterization Of Vegetable Oil Using Bread Fruit Seed

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 3 of 5

    Previous   1 2 3 4 5    Next
    • 1.5.3.1 Reactions
      Animal and plant fats and oils are composed of triglycerides, which are esters containing three free fatty acids and the trihydric alcohol, glycerol. In the transesterification process, the alcohol is de-protonated with a base to make it a stronger nucleophile. Commonly, ethanol or methanol are used. As can be seen, the reaction has no other inputs than the triglyceride and the alcohol. Under normal conditions, this reaction will proceed either exceedingly slowly or not at all, so heat, as well as catalysts (acid and/or base) are used to speed up the reaction. It is important to note that the acid or base are not consumed by the transesterification reaction, thus they are not reactants, but catalysts. Common catalysts for transesterification include sodium hydroxide, potassium hydroxide, and sodium methoxide.
      Almost all biodiesel is produced from virgin vegetable oils using the base-catalyzed technique as it is the most economical process for treating virgin vegetable oils, requiring only low temperatures and pressures and producing over 98% conversion yield (provided the starting oil is low in moisture and free fatty acids). However, biodiesel produced from other sources or by other methods may require acid catalysis, which is much slower.
      The transesterification reaction is base catalyzed. Any strong base capable of de-protonating the alcohol will do (e.g. NaOH, KOH, sodium methoxide, etc.), but the sodium and potassium hydroxides are often chosen for their cost. The presence of water causes undesirable base hydrolysis, so the reaction must be kept dry. In the transesterification mechanism, the carbonyl carbon of the starting ester (RCOOR1) undergoes nucleophilic attack by the incoming alkoxide (R2O−) to give a tetrahedral intermediate, which either reverts to the starting material, or proceeds to the transesterified product (RCOOR2). The various species exist in equilibrium, and the product distribution depends on the relative energies of the reactant and product.
      GENERAL PROPERTIES OF VEGETABLE OILS
      1.6 Vegetable oils - General properties
      Vegetable oils are obtained from oil containing seeds, fruits, or nuts by different pressing methods, solvent extraction or a combination of these (Bennion, 1995). Crude oils obtained are subjected to a number of refining processes, both physical and chemical. These are detailed in various texts and articles (Bennion, 1995), (Fennema, 1985). There are numerous vegetable oils derived from various sources. These include the popular vegetable oils: the foremost oilseed oils - soybean, cottonseed, peanuts and sunflower oils; and others such as palm oil, palm kernel oil, coconut oil, castor oil, rapeseed oil and others. They also include the less commonly known oils such as rice bran oil, tiger nut oil, patua oil, ko_me oil, niger seed oil, piririma oil and numerous others. Their yields, different compositions and by extension their physical and chemical properties determine their usefulness in various applications aside edible uses.
      Cottonseed oil was developed over a century ago as a byproduct of the cotton industry (Bennion, 1995). Its processing includes the use of hydraulic pressing, screw pressing and solvent extraction (Wolf, 1978). It is classified as a polyunsaturated oil, with palmitic acid (C16H32O2) consisting 20 – 25%, stearic acid (C18H36O2) 2 – 7%, oleic acid (C18H34O2) 18 – 30%, and linoleic acid (C18H32O2)40 – 55% (Fennema, 1985). Its primary uses are food related – as salad oil, for frying, for margarine manufacture, and for manufacturing shortenings used in cakes and biscuits.

  • CHAPTER ONE -- [Total Page(s) 5]

    Page 3 of 5

    Previous   1 2 3 4 5    Next